Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions
نویسنده
چکیده
Abstract. A broad set of sufficient conditions consisting of systems of linear partial differential equations is presented which guarantees that the Wronskian determinant solves the Korteweg-de Vries equation in the bilinear form. A systematical analysis is made for solving the resultant linear systems of second-order and third-order partial differential equations, along with solution formulas for their representative systems. The key technique is to apply variation of parameters in solving the involved non-homogeneous partial differential equations. The obtained solution formulas provide us with a comprehensive approach to construct the existing solutions and many new solutions including rational solutions, solitons, positons, negatons, breathers, complexitons and interaction solutions of the Korteweg-de Vries equation.
منابع مشابه
Wronskian Solutions to Integrable Equations
Wronskian determinants are used to construct exact solution to integrable equations. The crucial steps are to apply Hirota’s bilinear forms and explore linear conditions to guarantee the Plücker relations. Upon solving the linear conditions, the resultingWronskian formulations bring solution formulas, which can yield solitons, negatons, positions and complexitons. The solution process is illust...
متن کاملComplexiton solutions to integrable equations
Complexiton solutions (or complexitons for short) are exact solutions newly introduced to integrable equations. Starting with the solution classification for a linear differential equation, the Korteweg-de Vries equation and the Toda lattice equation are considered as examples to exhibit complexiton structures of nonlinear integrable equations. The crucial step in the solution process is to app...
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملWronskians, Generalized Wronskians and Solutions to the Korteweg-de Vries Equation
A bridge going from Wronskian solutions to generalized Wronskian solutions of the Korteweg-de Vries equation is built. It is then shown that generalized Wronskian solutions can be viewed as Wronskian solutions. The idea is used to generate positons, negatons and their interaction solutions to the Korteweg-de Vries equation. Moreover, general positons and negatons are constructed through the Wro...
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کامل